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The kinetics of a monolayer growth is studied using the two-dimensional lattice 
gas model by means of the path-probability method (PPM) for nonequilibrium 
phenomena. Kinetic equations for the combined processes of relaxation (adsorp- 
tion and desorption) and diffusion are derived analytically and solved for the 
first time in the square approximation of the PPM. Comparison of the square 
approximation with the point and pair approximations along with Monte Carlo 
simulation shows the effect of using a larger basic cluster than in the previous 
studies. When the square approximation is used, the growth rate results are 
much improved in both cases with and without diffusion and agree well with the 
Monte Carlo simulations results, except for very small values of the driving 
force L = A#/kBT, where 3# is the chemical potential difference between the 
vapor and the solid phase. In the range where the agreement is good, there 
exists a region where the growth rate R is proportional to exp(--c/L) with a 
constant c. This is the feature which is characteristic of two-dimensional nuclea- 
tion-limited growth. 

KEY WORDS: Monolayer growth; cluster variation method (CVM); path 
probability method (PPM); diffusion process, 

1. I N T R O D U C T I O N  

The cluster var ia t ion method (CVM) (1) and the path probabi l i ty  method 
( P P M )  (2'3) in t roduced by Kikuchi  have been successfully applied to 
various phenomena  occurr ing on lattice systems in equi l ibr ium and 

nonequ i l ib r ium processes, respectively. The CVM or the P P M  provides, 
systematically, a series of mean-field-type approximat ions ,  each of which is 
characterized by its basic clusters. The point  (mean-field) and  the pair  

approximat ions  are the first two of the series and  have been studied exten- 
sively. (4~6) In  most  cases the results of these approximat ions  were, however, 
not  quant i ta t ively  reliable at low temperatures/7,8) 

Recently, large basic clusters such as te trahedra and  octahedra have 
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been used in the CVM in the calculation of phase diagrams and these 
approximations are found to give improved results. ~ On the other hand, 
Kikuchi formulated the triangle approximation of the PPM for relaxation 
(adsorption and desorption) and diffusion processes in the monolayer 
growth model and the square approximation only for relaxation 
process, (I~ in addition to his previous work with the pair approxima- 
tion. (5'6) The resulting kinetic equations, however, lead to questionable 
results in both cases. Later, Wada et al. formulated the triangle approxima- 
tion on the solid-on-solid (SOS) model (4'12-16~ of crystal growth and 
obtained improved results compared with the point and pair approxima- 
tions. (3'7) In this case, however, the treatment of diffusion process was not 
based on the triangle approximation in the strict sense. (7/ As far as we 
know, reasonable results have not yet been obtained for diffusion kinetics 
with approximations better than the pair one. 

In the present paper, we formulate the square approximation of the 
PPM for the combined processes of relaxation and diffusion in the 
monolayer growth model. We have succeeded for the first time in obtaining 
analytic expressions for the kinetic equations for relaxation and diffusion 
processes. The time evolution of the density of atoms and the crystal 
growth rate are calculated and the results are compared with those of the 
point and pair approximations and those of the Monte Carlo (MC) 
simulation. (~7'18~ The present calculation yields improved results compared 
with the point and pair approximations and agrees well with the MC 
simulation. 

It should be emphasized that the present paper derives the kinetic 
equations for diffusion process using the square approximation not merely 
numerically but analytically, contrary to the general expectation. The novel 
insight for the formulation presented in this paper may be helpful in other 
problems of interest, such as the correlation factor problem in the tracer 
diffusion of multicomponent systems. (19) 

The outline of the present paper is as follows. In Section 2, we give the 
definition of the monolayer growth model and study its static properties by 
means of the CVM. In Section 3, we formulate the square approxiumation 
of the PPM and derive analytical expressions for the kinetic equations for 
relaxation and diffusion. In Section 4, we show the results of the numerical 
integration of the kinetic equations. The last section is devoted to a 
summary and discussion. 

2. T H E  M O D E L  A N D  ITS E Q U I L I B R I U M  P R O P E R T I E S  

We consider a monolayer system represented by a two-dimensional 
square lattice each site of which is either occupied or unoccupied by a solid 
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atom. The atoms are supplied from the vapor phase (the particle and 
thermal reservoir) onto the lattice and the adsorbed atoms can evaporate 
into the vapor phase. 

Using the site variable Ci, which takes 1 or 0 according to whether the 
ith site is occupied or vacant, the Hamiltonian of the monolayer system is 
defined as 

H = J  ~ { C i ( 1 - C j ) + C j ( 1 - C e ) } - A ~ C ,  (2.1) 
( i , j )  i 

where the first sum runs over all pairs of nearest neighbor sites and the 
second over all lattice sites. The first term denotes the excess energy ( J >  0) 
of atom-vacancy pairs and the second term denotes the energy gain of 
solid atoms due to the chemical potential difference A/z between the vapor 
and the solid phase. 

First we examine the static properties of the monolayer system by 
means of the CVM/1) In the square approximation of the CVM, the 
variables {xi}, {Ye}, and {zi} denote, respectively, the probabilities of 
appearance of configurations of the point, pair, and square clusters shown 
in Fig. 1. There are normalization and geometrical relations among the 
state variables: 

1 = X l - ~ - X  2 

Xl = Yl -q" 22  

x2 = Y2 + Y3 
(2.2) 

Yl = z 1 + 2 z 2 + z 3  

y 2  = Zz-'[- Z3 -[- Z4-I- Z5 

Y3 = z3 + 2z5 + z6 

Because of the relations (2.2), we can choose five variables, xl ,  Y2, -r2, a3, 
and z5, hereafter as independent state variables. 

The grand potential /2 of the system can be written as a function of 
inidependent state variables. From the Hamiltonian H in (2.1), the internal 
energy E is written as 

E = JzNy  2 - AI tNx 1 (2.3) 

where z ( = 4 )  is the coordination number and N is the total number of 
lattice s i tes .  

The number of possible configurations of the system with a set of state 
variables {xi, y~, z~} is calculated in the present approximation as ~1) 

[I-[k (YkN)!~k] z 
1410 = (2.4) 

l-I, (x ,N))!  I-Ij ( z jN)!"  

822/64/3-4-9 
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where/3 k and 7j are the numbers of the pair and square cluster configura- 
tions with the same probability of appearance, respectively (see Fig. 1). 
These numbers come from the fact that equivalent cluster configurations 
appear because of the symmetry of the system. We call them the symmetry 
number. Since the entropy S is written as S = kB in W0, the grand potential 
s is constructed from the energy E and the entropy S: 

f2/(NkB T) = zKy2 - Lx, + ~ x, In xi + Z 7jzj In zj - 2 ~ ~ Yk In y~ 
i j k 

(2.5) 

where L=A#/kBT, K=J/kBT, and Stirling's formula N ! = N I n N - N  
have been used. L is often called the driving force in the crystal growth 
problem since it controls the density of atoms in the monolayer. The 
thermodynamic equilibrium state of the system corresponds to the mini- 
mum of the grand potential s 
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Fig. 1. Cluster configurations and definitions of state variables, fl and y denote the symmetry 
numbers. 
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Fig. 2. (A) Isothermal curve in the x 1 vs. L plane at T <  T~ sq) (kBT~Sq)/J"~ 1.213). There is 
a van der Waals-type loop (a) - (b)- (c) - (d)- (a)  in which the coexistence line (a)-(d) represents 
stable equilibrium states and the segments (a)-(b) and (c)-(d) represent metastable states, 
while the states in the segment (b~(c)  are thermodynamically unstable. (B) Isothermal curve 
in the xt vs. L plane at T >  T~ ~q~. There are no unstable or metastable states. 
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In a special case with L = O ,  this system undergoes a second-order 
phase transition if we change the temperature T across the critical 
temperature To. We obtain the value of Tc in the square approximation (1) 
as 

kBT~sql/J= 1/1n[(45 + 171/2)/4] ~ 1.213 

The equations of state of the system are determined by the extremum 
condition of I2 with respect to independent state variables and can be 
represented as the isotherms in the Xl vs. L plane as shown in Fig. 2a 
and 2b. 

Below the critical temperature To, the isotherm in the xl vs. L plane 
has the van der Waals type loop (Fig. 2a), while above Tc there is no such 
loop in the isotherm (Fig. 2b). 

In the loop ( a ) - (b ) - ( c ) - (d ) - ( a )  in Fig. 2a, the coexistence line (a)- (d)  
represents thermodynamically stable equilibrium states in which the grand 
potential 12 is a minimum. The states between the points (b) and (c) are 
unstable, since the density Xl cannot decrease (increase) when the driving 
force L increases (decreases). The states represented by the segments 
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Fig. 3. Spinodal curves in the L vs. kB T/J plane for the point, pair, and square approxima- 
tions. The spinodal curve approaches to the coexisting line (L=0) as the basic cluster 
becomes large. T*, T~ sq), T~ TM, and T~ p~ denote the critical temperatures of the exact 
solution, the square approximation, the pair approximation, and the point approximation of 
the two-dimensional lattice gas model, respectively. 
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(a)-(b) and (c)-(d), on the other hand, are metastable states in which the 
grand potential s takes a local minimum value, but not the true minimum. 

The points (b) and (c) at which the state of the system becomes 
unstable are called spinodal points. At each temperature below Tc, there is 
a critical driving force L c corresponding to the spinoidal point (b) [(c)] 
below (above) which metastable states exist. In Fig. 3, the spinodal curve 
(which is made up of spinodal points for various temperatures) for the 
square approximation is shown along with those of the point and pair 
approximations. We can see that as the approximation is improved, the 
critical point approaches the exact critical point and the spinodal curve 
shrinks toward the coexistence line (L = 0). We will see later that these 
static properties of the system are closely related to the kinetic properties. 

For reference, we also show isotherms in the P/kB T vs. xl plane (P 
being the pressure), since what we can control in practice is not L, but P 
(Fig. 4). The pressure P is given by the thermodynamic relation g? = - PV, 
where V= Nv (v = a 2 with lattice spacing a) is the size of the system. The 
qualitative features of the curves are the same as those in the xl vs. L plane. 

3. KINETIC E Q U A T I O N S  

We derive kinetic equations for independent state variables in the 
square approximation of the PPM. Since we consider here the time evolution 
of the state of the system, each state variable is now a function of time. 
In addition to the state variables, we introduce variables called path 
variables each of which connects two states at t and t + At of a cluster. 
The path variables for relaxation process are written as {Xo.(t, t+At ) } ,  
{ Y ~ ( t , t + A t ) } ,  and { Z u ( t , t + A t ) } ,  the capital letters X, Y, and Z 
representing the point, pair, and square clusters, respectively. Similarly, the 
path variables for the diffusion process are written as {XuD(t, t + A t ) } ,  
{ YuD(t, t + A t) }, and { ZuD(t, t + A t) }, where the subscript D is added to 
distinguish diffusion from relaxation. Here one comment should be in 
order. We use the term "relaxation process" for single-site processes 
(adsorption and desorption) and "diffusion process" for two-site processes. 
The path variable with subscripts i and j denotes the joint probability that 
the cluster takes the ith configuration at t and the j t h  configuration at 
t + A t  through specified kinetics (relaxation or diffusion). The ways of 
numbering cluster configurations in the path variables are the same as 
those used in the state variables (see Fig. 1). Some examples of the path 
variables alnd the changes of cluster configurations are presented in the 
Appendix. In the following, we omit the arguments t and t + At from the 
path variables, for simplicity. There are geometrical relations among the 
path variables similar to those between the state variables. The state 
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variables at the initial time t and the latter time t + At are easily obtained 
from the path variables, since the path variables are the joint probability 
functions connecting the cluster configurations at t and t + At. 

We now write down the path probability function, which plays the 
same role in the PPM as the free energy (the grand potential in the present 
case) does in the CVM. By the term "path" we mean a change of state of 
the system in a short time interval At. The path probability function 
P( { Xg, Y~, Zi:, XijD, YuD, Zi:D} ) is the conditional probability that any 
one of the paths specified by the set of path variables {X0., Yo, Zu, XOD, 
YUD, ZUD} is realized when the initial state {xi(t), y~(t), zi(t)} is given. It 
consists of'three factors. 

The first is a kinetic factor given by 

P1=(ORAt)NX21(ORAt)NXI2(ODAt)NzY22D(1--O(t)ZIt)NX11(l--O(t)At) NX22 (3.1) 

where OR and OD are the microscopic characteristic rates for relaxation and 
diffusion, respectivley. Here 1 - O(t)At is the probability that no adsorption, 
desorption, or diffusion occurs at a lattice site in At for given values of K 
and L and, if needed, O(t) can be determined self-consistently/z~ 

The second is a Boltzmann-like factor: 

P2 = e x p ( -  AE/k, T) (3.2) 

where the energy change AE in At is given by 

AE = -NA#X21 + 4N J( Z12 - -  Y23) 

+ 4NJ(2Yazm + YlZD2 -- 2Y23DI -- Y23D2) (3.3) 

The first term in (3.3) denotes the energy change in adsorption due to the 
chemical potential difference Ap. It is assumed that the probability of 
adsorption does not depend on the adsorption site. The second term 
denotes the energy change due to desorption. The third term accounts for 
the energy change in the diffusion process which involves a migration of an 
atom from an initial site to one of its nearest neighboring sites. It is also 
assumed that the probability of diffusion does not depend on the final site 
of the atom. 

The third factor P3, (2) which is related to the path entropy, is the 
number of equivalent paths with a set of path variables {Xo., Yo, Zu, XoD, 
Y,TD, ZgD} starting from the state {xi(t), yi(t), zi(t)}: 

W 
P 3 = - -  

Wo 
{bond)~, /. {bond}~ 

= {point }~,{ square } ~,/{point },{square } t (3.4) 
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where 

{point}j, = [ I  (XoN)! I~ (XkmN) !Ak~€ 
i , j  k , l  

{b~ ~' = 1-[ (YoN) !B'~ ~I (Yk~oX) !Bk'~ 
i , j  k,l  

{square}at = l~ (ZoU) !G~ l~ (ZkmN) !Gk'~ 
i , j  k , l  

{p~ }t = l-[ (xeU)! 
i 

{b~ 1-[ (yiN) !~' 
i 

{square},= l~ (ziU) !~ 
i 

(3.5) 

Here AuD, B0, B0D , Go , and GoD are the symmetry numbers for the path 
variables for the point, pair, and square clusters, respectively, similar to 
those of state variables. The list of symmetry numbers for the path 
variables is presented in Table I of the Appendix. Note that W0 is the 
combinatorial expression (2.4) used in the CVM, and in W the state 
variables of Wo are replaced by the corresponding path variables. 

The product P of the three factors P1, P2, and P3 gives the path 
probability function of the system. Its logarithmic form is given by 

N - 1  In P = 2 ~ B, Yo In Yu - Z GkzZkt in Zkl-  Z Xm, in X,,, 
O kl mn 

+ 2 ~ BOD YijD In YUD -- ~ GktDZklD In ZklD 
ij kl 

- -  E A m n D X m n D  i n  X m n  D 
mn 

+ (Xn +X22) ln(1 - O A t ) +  (X21+X12) ln(Ol~At)+4Y22D(ODAt) 

+ LX21 - 4K( Y12 - Y23) - 4K(2 Y12m + Y~2D2 -- 2 Yz3z,1 -- YZ3D2) 

-- 2 2/3ey~ln y i + ~ T j z j l n z j + Z x k l n x  k (3.6) 
i j k 

The kinetic equations of the system are obtained from the most 
probable path derived by minimizing the path probability function P with 
respect to independent path variables. The differentiation of (3.6) with 
respect to them leads to 28 algebraic equations, which are separated into 
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three groups; six equations for adsorption (A), six equations for desorption 
(B), and 16 equations for diffusion (C). In terms of state variables and 
given parameters such as L, K, OR, 00, and At, they are analytically solved 
to give the following expressions for the independent path variables. These 
equations have self-explanatory intuitive interpretations. 

(A) Adsorption 

Y21 Y32 Z21 Z32 Z42 Zs4 eLORAt 
Y2 Y3 z2 z3 z4 Z5 

(3.7) 

(B) Desorption 

with 

Y12 Y23 Z23 _ H Zl2 = H Z24 Z45 
(1/H)wl + w3 w3 + Hw5 z2 zl z2 Hz4 

X12 
(1/H)wl + 2W3 -+- Hw5 

W 1 W 4 

[(_Wl 2~A_ )2 + 4w23~1/2 
D 

yleK y X ylY21 

yxeK( w5 W1 ) 
H=-~w 3 y-~--K F D yle K 

WI = ZI "~- Z2, W3 = Z2"~- Z3, W5 -.~- Z4 "~- Z 5 

(3.8) 

(C) Diffusion 

( X I ~ ( W  3 ..[_ HW5~ ( S(W5t l  ..{_ W3t2 ) "~2 
Y22D = X12D = X12D = OD At  \y2/]\ y2e_KS  j \ y , e K ( w 3  + H w s ) J  (3.9) 

and 

Z21D Z32D Z42D Z54D Z32D1 E3202 Y21m Y21D2 Y22D 
Z2 Z3 

HZ12D HZz4D 
7-- 1 Z 2 

Y12D1 
(1/H)Wl + w3 

Z4 Z5 Z3 Z3 Y2 

Z2301 Z23n2 Z45D Y=D 
Z 2 a 2 Ha 4 S 

Y12D2 Y22D Z220 
(1/H)wl + w3 S ' z2 

Y2 X2 

t2 Y22D 
WStl + w3t2 
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with 

1 
S=~wl+2w3+Hws,  tl=yleK(w3+HWs), t 2 = y2e--K(wl + Hw3) 

By making use of the fact that each state variable is written as a linear 
combination of path variables, we Can obtain the kinetic equations for 
independent state variables: 

dxx = OR[erx2 - x1223 dt 

dY2dt = OR [(Y3 -- Y2) eL + Xl 
Hw5 - (1/H)wt 

R 2J] 

z=,e  

+20D[ 2z3+z4-z2x 2 2z2-(1/H)(z2+zl)] (3.10) 

dz3-- 20R I(Z5-- z3)eL-- xl Z3-- Z2 24~ 
dt R ej 

+200F2(zs--z3) 2(z3--Zz)+2(z4tl_--z, '2)]2 ~ 
[_ X 2 S wstl + w3t2 A 

dz5 -- O R I 3zs)eC-- xl H(zs-- z4)-- 24] 

+ 200 [-~ Z6 --3Z5x2 H(z5-Z4)s q- 2231 2D 

where 

1 [I w I W'''"~5 D) 

r 2 .  x, w3 + Hws { S(wstl z w3t2) ~ 
2 o - 0 0 A t - y  2 y2e-XS \yleX(wa+Hw5)] 

Since the total number of atoms Nxl in the monolayer does not change by 
diffusion, the kinetic equation for Xl does not involve a diffusion part. The 
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other kinetic equations consist of relaxation and diffusion parts. The 
relative influence of diffusion upon relaxation process is measured by the 
diffusion length Xs, (~5'18) defined by Xs = (ODZ/OR) m, which represents the 
mean diffusion distance (in units of lattice constant a) of an isolated atom 
during its lifetime until desorption occurs. 

4. N U M E R I C A L  RESULTS 

In order to see the time evolution of the system, we integrate the 
kinetic equations using the Runge-Kutta method. In Figs. 5 and 6 the time 
evolution'of the density Xl(t) of atoms is shown. 

First let us examine the cases for T <  Tc without diffusion (Fig. 5a). As 
stated in Section 2, at T < Tc there is a critical driving force Lc below which 
metastable states exist. For L < L c ,  when we start integration from an 
almost vacant state of the system, the density xl increases to the value of 
the metastable state but does not climb up to the value of the stable equi- 
librium state ( O  in Fig. 5a). For  L > L c ,  on the other hand, the density 
Xx(t) stays initially on a flat portion for a while and then climbs to the final 
saturation value, which is equal to the stable equilibrium value determined 
from the equations of state in the CVM ((2)-@ in Fig. 5a). As the driving 
force L is increased, the initial flat portion and the elapsed time until 
saturation decrease. In Fig. 5b the results with diffusion length Xs = 2 are 
shown. Although the qualitative features of the curve are the same as in 
Fig. 5b, the initial flat portion for L > Lc is smaller than in the case without 
diffusion. 

In the case of T >  To, there are no metastable states and hence no 
critical driving force Lc. For  all L > 0, the initial flat portion found in 
Fig. 5a does not exist and the density Xl increases directly to the final 
equilibrium value (Fig. 6a). Also in this case the diffusion leads to a faster 
crystal growth (Fig. 6b). 

The reason for the faster crystal growth in the presence of diffusion is 
that the diffusion tends to bring the system into local equilibrium and thus 
the rate of evaporation is reduced compared to the case without diffusion. 
This effect was also discussed in the pair approximation. (15) 

We next examine the dependence of the growth rate R on the driving 
force L. In the present case the crystal growth rate R is defined as 

R = Axl/At (4.1) 

where Axl is the increment of xl from the initial, almost zero value to the 
almost saturated value Ix1(0)= 1.0• 10 -3 to 99.3% of the saturated 
value] and At is the elapsed time. We show in Fig. 7 the dependence of the 
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Fig. 5. (A) The time evolution of the density xl of a toms at T <  T~ Sq) without diffusion 
(Xs=0) .  For L<Lc, the system is captured in a metastable state ( O ) .  For L>Lc, the 
density x 1 stays initially on a flat portion for a while and then climbs up to the final saturation 
value ((~) ~ (~)). As the driving force L is increased, the initial flat portion and hence the time 
elapsed until the saturation become shortcr. (B) The time evolution of the density x t of a toms 
at T <  T~ sq) with X s = 2. This case shows faster growth than in the case without diffusion (A). 
Diffusion does not  change the critical value of the driving force L c. 
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Fig. 6. (A) The t ime evolu t ion  of the densi ty  x 1 of a toms  at T >  T c w i thou t  diffusion 
(X~=0) .  The densi ty  x 1 increases directly to the sa tu ra t ion  value for all  L > 0. (B) The t ime 

evolu t ion  of the densi ty  x 1 of a toms  at  T >  T c wi th  X s = 2. This  case shows faster g rowth  than  

in the case wi thou t  diffusion (A). 
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growth rate R on the driving force L at a temperature kBT/J= 1.0 
(<kBT~Sql/J~-l.213). In this and the following figures, we use the 
normalized growth rate R/k +, where k + is defined by k~ =ORe L. The 
growth rate data of the point, pair, and square approximation are 
presented along with those of the Monte Carlo simulations, which we have 

0.15 

R/k~ 

0.1 

0.05 

00 

kBT/J=I.0 
Xs=O 

/ "  

Point  ( 
Pa i r  ............. I 

i Square . . . . ~  
M.C. ,, y . - - y !  / ...':'" 

4 , ,! 
0.5 1.0 

L -- 
Fig. 7. The growth rate data of the point, pair, and square approximations with L as 
abscissa are plotted along with the Monte Carlo simulation data (40• lattice) at 
k B T/J= 1.0 (<k  B T~sq)/J_~ 1.213) without diffusion. As the basic cluster becomes large, the 
growth rate results are improved. 
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performed according to the method of Gilmer and Bennema. (17'~s) We see 
that as the basic cluster becomes large, the growth rate results agree better 
with those of the Monte Carlo simulation. We also see that the unphysical 
nongrowth region shrinks considerably in the square approximation com- 
pared with the point and pair approximations. We note that this result is 
related to the static result of the CVM in which the region of metastable 
states shrinks as the approximation improves (see Fig. 3). 

In order to see the behavior for small L in detail, the data in Fig. 7 are 
plotted again in Fig. 8A, in which the vertical axis is ln(R/k~) and the 

0 

(A) 

-2 

kBT/J=I.O 
Xs=O Point 

Pair 
Square 

In(R/k ) . M.C. " 

-6 ! ~ ' ~  
I 

0 5 10 
I / L  

Fig. 8. (A) Semilogarithmic plot of the growth rate data with 1/L as abscissa at k B T/J = 1.0 
(<kBT~q)/J~l.213) without diffusion (Xs=0) .  The growth rate data of the square 
approximation are on a linear curve for relatively small L and fit the Monte Carlo simulation 
data (40•  lattice), showing the exponential dependence R = c o e x p ( - c l / L )  (Co and e 1 
being a constant)  of the growth rate R on the driving force L. The linear portion of the square 
approximation data in this figure corresponds to the range of driving force L from about 0.1 
to 0.2 in Fig. 7. (B) Semilogarithmic plot of the growth rate data with 1/L as abscissa at 
k B T/J = 1.0 with X s = 2. The results of the square approximation show the same features as 
those in (A). 
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(B) 0 

-2 

In(R/G) 
-z 

0 

kBT/J=I.0 
Xs=2 Pair 

Square 

5 10 

I/L , 
Fig. 8. (Continued) 

horizontal axis is 1/L. The data with X~ = 2 at the same temperature are 
presented in Fig. 8b. We see in both Figs. 8a and 8b that there is a wide 
region where the results of the square approximation agree well with those 
of the Monte Carlo simulation compared with those of the pair approxima- 
tion. A large portion is linear and can be represented as 

R = Co e x p ( - c J L )  (4.2) 

where c o and cl are constants. The dependence of the growth rate R on the 
driving force L given by (4.2) is the characteristic feature of two-dimen- 
sional nucleation-limited growth. This fact implies that even in the cluster 
approximation, the nucleation-limited growth phenomena can be treated if 
we use a basic cluster larger than the critical size of nucleation. 

Figures 9a and 9b compare the details of the growth curves for the 

822/64/3-4-10 
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Fig. 9. The growth curves for the pair and the square approximations together with those of 
the Monte Carlo simulation (40 • 40 lattice) in the cases (A) without diffusion (Z~= 0) and 
(B) with Xs = t. 
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pair and the square approximations with those of the Monte Carlo simula- 
tion. Figure 9 clearly shows that the square approximation is an effective 
improvement over the pair one. 

5. S U M M A R Y  A N D  D I S C U S S I O N  

We have studied the static and kinetic properties of monolayer growth 
based on the lattice gas model in the square approximation of the CVM 
and the PPM. Kinetic equations for combined processes of relaxation and 
diffusion are obtained analytically and solved for the first time in the 
square approximation of the PPM. The results are compared with the 
point and pair approximations to see the effect of using a square as the 
basic cluster. The growth rate results of the square approximation are 
considerably improved in both cases with and without diffusion and agree 
well the Monte Carlo simulation except at extremely low driving forces 
L = A # / k  B T. The unphysical nongrowth region also shrinks considerably in 
the square approximation compared with that in the point and the pair 
ones. This is related to the static result in the CVM in which the region of 
metastable states shrinks as the approximation improves. 

In the range where the agreement is good, there exists a region where 
the results of the square approximation show the characteristic feature of 
nucleation-limited growth. This fact implies that even in the cluster 
approximation method, nucleation-limited growth phenomena can be 
treated if we make use of a basic cluster with a size larger than the critical 
size of nucleation at a given temperature T and driving force L. 

Our study here shows that as the size of the basic cluster becomes 
larger, improved results are obtained in the PPM as in the CVM. It is also 
noteworthy that the analytic expression of the kinetic equations for relaxa- 
tion and diffusion are derived in the square approximation, since the 
closed-form expression for diffusion in the square approximation of the PPM 
has been considered very difficult in spite of the fact that the approxima- 
tions with larger basic clusters such as tetrahedra and octahedra ~ are 
often used in the CVM. We also add a comment that the possibility of 
using a basic cluster larger than a pair could shed light on other problems, 
such as the correlation factor problem in the tracer diffusion of multi- 
component systems; it has been argued based on comparison with Monte 
Carlo simulation results whether the PPM can be applied in its original 
form or needs a modification. (19) 
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A P P E N D I X  

We show some examples of path variables here. The path variables 
{X0, Y~, Zu} denote the joint probability that the cluster takes the ith 
state at t and the j th  state at t + A t  through a relaxation process. Examples 
of the path variables for the relaxation process are presented in the top row 
of Fig. 10. The numbers in the parentheses denote the symmetry numbers. 
The symmetry numbers for the path variables are summarized in Table I. 

Similarly to the relaxation process, the path variables for the diffusion 
process are written as {XuD, Y~D, ZijD), with the subscript D meaning 

X12 Y3z Z23 ZGs 

X12D u Z4sD Z~sD 

t 

t+At o 

Fig. 10. Examples of path variables. The numbers in the parentheses denote the symmetry 
numbers. 
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diffusion. Y22D, Z22D, Z34D, Z43D, and Z55D describe jumps of atoms within 
the clusters considered. On the other hand, path variables such as Z45D or 
Z65D describe jumps of atoms from or into the clusters considered, as 
shown in the bottom row of Fig. 11. In addition to the above, there are 
path variables which have four subscripts~ such as Yt2D1 or Z23z~t. The 
configuration changes for such variables are shown in Figs. 1t and 12. 

Table  I. The List of  S y m m e t r y  Numbers  fo r  the Path Var iab les  a 

Bll B12 B21 B22 B23 B32 B33 Gll G12' G21 G22 (323 
1 2 2 2 2 2 1 1 4 4 4 8  

G24 G32 G33 G35 G42 G44 G45 G53 G54 G56 G65 G66 
4 8 4 8 4 2 4 8 4. 4 4 1 

AI2D A21D BI2DI BI2D2 B21D1 B21o2 B22D B23D1 B23D2 
4 4 4 2 4 2 2 4 2 

B32D1 B3tD2 G12D G21D G'220 G23D1 G23D2 G24D C032D1 
4 2 8 8 8, 8 8 8 8 

CO3202 CO34D 'CO3581 G3502 G42D G43D G45D G5301 GS3D2 
8 8 8 8 8 8 8 8 8 

G54D G5sD G56D G6sD 
8 8 8 8 

The symmetry numbers  Ai, j for the point path variables of the relaxation process are 
omitted here, since they are all equal to one. 
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Y21D1 Y21D2 Y32D1 Y32D2 

t ~ ~ ~ 

t+z~t H H I - - O  t - - 0  

Z32D1 Z32D2 Z53D1 Z53D2 

Fig. 11. The path variables for diffusion which have four subscripts. Here atoms jump into 
the clusters from the outside. 
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t+At 

Y12D1 Y12D2 Y23D1 Y23D2 
/ 

o--0 o - o  o--o 

Z23D1 Z23D2 Z35D1 Z35D2 

t+At 

I (8) 

Fig. 12. The path variables for diffusion which have four subscripts. Here atoms jump out 
of the clusters to the outside. 
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